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ABSTRACT

The equatorial entrainment zone model of Garwood et al.

(1989) is employed along with data collected by Moum et al.

(1984) during the Tropic Heat I Experiment to explain how the

dissipation of turbulence is related to surface forcing of

wind stress and net heat flux. Four numerical experiments with

different atmospheric conditions are conducted with the

entrainment zone model. Solar radiation is diurnally repeated,

and wind stress is held constant in the first case. The model

is forced with linearly varied wind speed in the second case

and uses observed winds for the third case. The first three

cases demonstrated the effects of wind stress on the

dissipation of turbulence. In the final case both observed

wind and observed solar radiation were applied to the model to

simulate the effect of realistic forcing, allowing a

comparison between model-predicted and observed values of

dissipation. Numerical solutions qualitatively agree with the

observations, and the time and depth dependence of the diurnal

dissipation cycle are well reproduced by the model.
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I. INTRODUCTION

A. PURPOSE OF THE STUDY

Although the dyraniic and thermal structure of the oceanic

planetary bo-ndary layer (OPBL) is generally understood in

most regions of the globe, the structure of the OPBL at the

equator has not been well explained. The oceanic mixed layer's

response to atmocpheric forcing is determined principally by

local thermodynamic prccesses and turbulent mixing processes.

However, there are significann differences near the equator.

Considerable research effort has been devoted to improving the

physical understanding and t- developing mathematicaI

solutions. However, before the Tropical Heat I Experiment of

1984, model development was limited because of sparse

.microstructure data at the ecuator.

Richt on the -quator there exists the eastward flowing

Equatorial Undercurrent (EUC) beneath the westward flow of the

South Equatorial Current (SEC). The upper equatorial waters

have a steady, large, vertical shear of zonal velocity and

very energetic turbulence. Because of the large vertical shear

above the EUC core, the equatorial mixing layer is also

characterized by a very thick entrainment zone with a

shallower, weakly stratified surface layer. This differs from

the mid-latitude mixed layer system where usually there is a



very thin entrainment zone with a well-mixed surface layer of

usually greater thickness.

The main purpose of this study is to understand how the

dissipation rate (e ) for ocean turbulence at the equator is

related to the local atmospheric conditions of surface heat

flux and wind stress. The equatorial entrainment zone model of

Garwood et al. (1989) was employed, along with data collected

during the Tropical Heat I Experiment. This data consists of

temperature and current velocity profiles and a time-varying

12-day zonal wind speed record collected near 140 W longitude

in the equatorial Pacific ocean by Moum et al. (1989).

A statement of the problem is contained in section B of

this chapter, detailing the scientific objectives of the

study. In section C the background literature is reviewed.

Chapter II gives the mathematical basis of the model and the

physical interpretation and assumptions. Chapter !I! shows the

results of four different numerical solutions and discusses

the significance of the results. Finally, Chapter IV states

the conclusions and recommendations for the study.

B. STATEMENT OF PROBLEM

For years, geophysicists and mathematicians have been

fascinated by the equatorial ocean because of the absence of

the Coriolis force (f=O) and the presence of the EUC

(Equatorial Undercurrent). The conventional view of equatorial

dynamics requires that the zonal wind stresses be balanced by
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the vertical integral of the zonal pressure gradient, the

mesoscale eddy flux and the mean advection over the upper few

hundred meters. Our understanding of the dynamics in this

region has been severely hindered by lack of observed data.

Intense hydrographic surveys and turbulent kinetic energy

dissipation rate measurements taken at the equator near 140W

during the Trcpical Heat I Experiment in November 1984

revealed unforeseen surface layer structure, and a diurnal

cycle of the dissipation rate was noted, contirming the

earlier report of Paka and Fedorov.

The vertical temperature profile at the equator shows a

shallow, weakly stratified surface layer with a depth of 10-30

meters in contrast to a typical convectively well-mixed layer.

Moum et al. (1989) defined the mixing layer (ML) as a surface

layer in which the variation in dissipation was small.

Additionally, equatorial profiles of temperature reveal a

large entrainment zone with a thickness of 80-120 meters,

whereas in other areas of the open ocean the entrainment zone

is a relatively thin thermocline. Because of its thick

entrainment zone, the equator is an ideal place for studying

turbulent mixing processes associated with entrainment.

An equatorial entrainment zone model has been derived by

Garwood et al. (1989). By prescribing diurnal surface heat

fluxes and a constant westward wind stress component and zonal

pressure gradient, solutions for this model simulate the EUC,

3



the typical equatorial temperature profile, and a diurnal

cycle of the dissipation rate.

Garwood (1987) showed that maximum entrainment zone

thickness (b ) is proportional to the friction velocity divided

by the Coriolis parameter when the entrainment zone achieves

a steady state. At the equator, although the Coriolis force

equals zero, the Ekman suction of the easterly trade winds

causes a positive mean upwelling velocity. This results in a

large, (6=100 m) steady entrainment zone beneath a shallow

surface layer (Garwood et al., 1990).

Peters and Gregg (1988) and Mourn et al. (1989) suggested

that the diurnal cycle of dissipation was caused by a high

frequency night-time burst of breaking internal waves.

However, in Garwood's model the diurnal dissipation cycle can

be simulated with no special consideration of internal waves.

The model solution compares favorably with a section

observed across the equator at 140" 15' W from 3"N to 3S for

four days in November 1984 (Mourn et al., 1986) and

qualitatively shows that the maximum dissipation rate

corresponds to: (a) upward heat flux (night time); (b) large

wind stress; (c) greater vertical shear (above EUC core); and

(d) possibly, kinetic energy provided by internal waves.

In this thesis, in order to understand how the upper layer

of the ocean responds to atmospheric forcing, the Equatorial

Entrainment Zone Model was initialized with the typical

4



temperature and velocity profile observed during the Tropical

Heat I Experiment (Moum et al., 1989). Several numerical

experiments were then conducted. The first case was run with

constant wind stress and periodic solar radiation have a local

noon time peak of 800 W/m 2. The result showed a diurnal

dissipation cycle and an equilibrium state was reached

approximately after five days. The second case was designed to

determine the effect of a linear increase and decrease in wind

speed upon the mixing processes. The third case employed the

time-varying wind stress that was observed for the 12-day

period 20 November to 1 December, 1984. The radiation was

cyclical, but repeated exactly every day for this case. The

last case employed both observation of solar radiation and

wind data from the Tropic Heat I cruise to specify the surface

boundary conditions. Predictions of dissipation for this last

case were then compared to the observed dissipation.

C. LITERATURE REVIEW

1. Equatorial Circulation

FroILI observations, the equatorial currents are

characterized by zonal bands in which the flow is alternately

eastward and westward (Knauss, 1963). The eastward flowing

countercurrent approximately located between 5"N and 10'N is

the North Equatorial Countercurrent (NECC). The South

Equatorial Countercurrent (SECC) is between 5'S to 100S. Here

5



"countercurrent" refers to the flow.' directioiJ being counter to

the direction of the easterly trade winds. The westward flow

between the two countercurrents is called the South Equatorial

Current (SEC). During the northern summer the NECC is in its

northernmost position, whereas in the northern winter the

current lies closest to the equator. Wyrtki (1978)

demonstrated that dynamic height differences and geostrophic

transport indices correlate extremely well for each of the

four equatorial currents, making surface slope an excellent

indicator of the geostrophic transport. Also, his computations

of mean geostrophic transports for the individual currents

identify the SEC as the strongest flow, transporting 55 x 10"'

m3/sec (Wyrtki, 1984)

Cromwell et al. (1952) discovered the Pacific EUC to be

a subsurface eastward flow that is about 100-200 m thick and

200-300 km wide. It is centered approximately on the equator

with its core just beneath the base of the mixed layer in the

top of the equatorial thermocline. During GATE (GARP Atlantic

Tropical Experiment), Duing et al. (1975) found evidence for

a meandering of the Atlantic Equatorial Undercurrent with a

period of 2-3 weeks and a zonal wavelength of 3,200 km. Firing

(1987) observed a complex system of deep zonal currents in the

central equatorial Pacific during 16 months of current

measurements spanning the 1982-1983 El Nino episode. At least

three extraequatorial currents appear to be permanent: the

6



north and south intermediate countercurrents, with eastward

velocity cores at 600 m depth, located 1.5-2.0 degrees from

the equator; and the south equatorial intermeidate current,

with a westward core at 900 m depth three or more degrees

south of the equator. On the equator, the deep jets were

nearly stationary during the period of his measurements.

The discovery of the EUC triggered much equatorial

modeling activity. Almost all of the early equatorial models

included baroclinic effects and assumed the surface layer to

be decoupled from the deeper ocean (Yoshida, 1959; Stomel,

1960; Charney, 1960). The first successful extension of

classical Ekman theory to the equator was Stommel's model

which balances the Coriolis force with the vertical diffusion

of momentum and the horizontal pressure gradient. The zonal

pressure gradient is a source of eastward momentum that drives

the undercurrent. The wind forcing is added to the ocean as a

surface stress and a zero stress condition is imposed at the

bottom of the layer. If the eddy viscosity is constant with

the depth, the vertical structure of the zonal velocity at the

equator is parabolic, with surface flow in the direction of

the wind and subsurface flow (undercurrent) in the opposite

direction. In addition, the model develops a meridional

circulation similar to that diagnosed from the distribution of

tracers in the Equatorial Pacific. Stommel (1960) showed there

is surface divergence of fluid from the equator, subsurface

convergence, and equatorial upwelling.
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2. Atmospheric Conditions

At low altitudes, between the two subtropical high-

pressure belts, the variability is much less and, except on

infrequent occasions, the circulation pattern on any day

varies little from the average for the season (Neiburger et

al., 1982). Furthermore, Gray (1976) determined that there was

cyclogenesis near the equator, using tropical cyclone origin

location data for 20 years (Elsberry et al., 1989). Since the

horizontal component of the Coriolis force vanishes at the

equator, the winds are geostrophic.

The streamline analysis by Palm~n and Newton (1969)

shows that the trade winds are the steadiest feature of the

atmospheric circulation near the surface. Although the

easterly trades are subject to fluctuation, the westward wind

stress component is observed year-round at the equator.

Although the equatorial surface water is cooled by the

upwelling, the sea surface temperature (SST) is generally

greater than 250C, and the mean annual precipitation rate is

larger than 2,000 millimeters in the equatorial western

Pacific Ocean and between 500-1000 millimeters in the

equatorial eastern Pacific Ocean (Tchernia, 1980). During the

1984 Tropic Heat I Experiment, average solar radiation for 12

days shows the maximum short wave heating at local noon may

reach 950 W/m2 and net longwave back radiation is about 150

W/m2. Seasonal variation of the Intertropical Convergence Zone

8



(ITCZ) causes it to be close to the equator in the northern

hemispheric winter when the cumulus clouds block much of the

solar heating.

3. Air-Sea Interaction

The atmosphere is heated more by the earth's water and

land surface (44%) than by the direct absorption of solar

radiation (<20%). The Earth's surface heats the atmosphere in

three general ways: longwave radiation, sensible heat flux,

and latent heat flux. Because of the heat that is given to the

atmosphere, available potential energy is created and

converted into kinetic energy by means of the buoyancy forces

causing the rising of warm air and sinking of cold air. The

kinetic energy of the atmosphere is then partly passed back to

the ocean by wind stress driven ocean currents. Turbulent

motions are generated at the interface of the two media by

conversion of mean kinetic energy (KE) to turbulent kinetic

energy (TKE) and by buoyant convection.

The mixing processes in the OPBL occur because of the

turbulence. Laminar fluid is affected by the generation and

transport of turbulent kinetic energy which tends to

homogenize the fluid. One criterion for examining dynamic

instability is the gradient Richardson number, a non-

dimensional number arising in the study of shearing flows of

a stratified fluid. This number is the ratio of work done

against gravitational stability to energy transferred from

mean to turbulent motion. Theoretical studies have placed the

9



critical Richardson number variously from 1/4 to 2 (Huschke,

1959).

The first mixed layer model was proposed by Krauss and

Turner in 1967. This early model dealt with the heat budget

and the mechanical energy budget, using concepts of heat

conservation and a TKE equation to form a closed model system.

This model can be tuned to give an explanation of physical

processes. In this study, the Equatorial Entrainment Zone

Model contains similar considerations. However, in the

equatorial region, the closure technique is different.

4. Equatorial Zonal Momentum

The most important contributions to the zonal momentum

budget at the equator are the zonal convergence of zonal

momentum, upwelling of eastward momentum, the zonal pressure

gradient, the divergence of the mesoscale eddy flux, and the

turbulent stress (Bryden and Brady 1985). Balancing these

factors can give a steady-state conservation quation:

-a 8 - _ _ _ai,- -j( - -.
u- + W,- _ , __

ax 49" ax ax - azU(1)

where U and - are mean zonal and meridional velocities, -p is

the mean pressure, p is density, x is the zonal direction

(positive eastward), and u7-7 is the vertical turbulent flux

of zonal momentum. In the Tropic Heat I Experiment, the large

numbers of profiles collected make it possible to calculate

approximate balances of the momentum budget (Dillon and Moum

1989). However, Dillon and Moum did not find an expected large

10



scale momentum balance by using typical estimates of the large

scale forces and conventional estimates of the turbulent

stress. They suspected either the large scale processes during

the time of measurement were highly atypical, or estimates of

momentum flux based on a production-dissipation balance are

flawed. A similar result was reported by McPhaden et al.

(1988) who studied the response of the upper equatorial

Pacific to a westerly wind burst of several days duration and

estimated that the eddy viscosity necessary to explain the

observations would be on the order of 100 cm2/s; this is much

larger than Gregg et al. (1985) estimated using microstructure

measurements. In this case they suggested the eddy viscosity

and turbulent stress estimated from dissipation rate and shear

measurements must be treated with caution.
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II. THEORY

A. EQUATORIAL ENTRAINMENT MODEL

The Equatorial Entrainment Zone Model is based upon a

dynamic stability hypothesis to the entrainment zone below the

equatorial mixed layer. In the form used here, it presumes

meridional-symmetric heat (1st law of thermodynamics) and

momentum budgets, together with the mixing hypothesis to get

solutions.

The model uses a vertical grid with 5 m resolution spanning

the region z=O to z=300 m. A time step of 1 hour is adequate

to resolve diurnal-period changes. The mixing of heat and

momentum on this grid is achieved with the method developed by

Adamec et al. (1981). This method was used interactively each

time step to achieve convergence (Garwood, 1990).

Generally, the oceanic boundary layer or mixed layer is a

fully turbulent region that is bounded above by the air-ocean

interface, and where the temperature and salinity are usually

observed to be fairly well mixed. The limitacion of ocean

mixed layer depth (MLD) is usually determined by the Obukhov

length scale L=(t /p) 2/B,, under the influence of wind stress

r and downward buoyancy flux B, where p is density. Off the

equator, and in the case of negligible surface buoyancy flux

(neutral conditions), the limiting scale for the MLD may be
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Rossby and Montgomery's neutral planetary boundary scale u. If

(1935), where u is the ocean surface frictional velocity and

f=2 0, is the Coriolis parameter. This scale may also be a

dominate scale for the entrainment zone immediately below the

surface layer. Although L is the limiting scale for the

surface layer, u. If may determine the potential maximum

thickness nmax of the underlying entrainment zone. Garwood

(1987) showed that 6rnma=0.2u. f when the entrainment zone

achieves a steady state.

Near the equator, the complexity of the mixed layer system

creates a structure unique from other ocean regions. Here,

upwelling may reduce the thickness of the surface layer to a

fraction of the Obukhov length (Muller et a!., 1984). The

Naval Postgraduate School OPBL Bulk Model (NPS MODEL)

(Garwood, 1977) yielids typical equatorial ML depths of 10-30

m. Since the thickness of the equatorial entrainment zone 6 Is

much larger than the depth of surface layer h, the magnitude

of h is not very significant for the entrainment zone

solutions. Therefore, in this study h will be taken to be a

representative value of 20 m for all cases.

B. MEAN TURBULENT KINETIC ENERGY EQUATION

The steady state meridional-symmetric mean turbulent

kinetic energy equation is:
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I = I II '(EI I = 0

dt - z P PO (2.1)

SI III IV

where E (u"2 + ut2 + w/ 2 )2

Term I represents the rate of mechanical production which

is the dominate source of TKE in wind driven regimes. This

term is the conversion of mean kinetic energy to turbulent

kinetic energy. Term II is the buoyancy flux and can be either

a source or a sink in TKE. In nighttime with net surface heat

loss the mixed layer buoyancy flux will be positive,

generating more TKE enhancing the vertical mixing processes.

Term !I! is the divergence of the turbulent flux of TKE and is

responsible for transporting turbulence generated near the

surface to the bottom of the mixed layer. The Term IV

represents viscous dissipation. Dissipation into heat is a

.a-or sink for TKE

C. MODEL EQUATIONS

1. Dynamic Stability Requirement and Mixing Hypothesis

Without forcing, the entrainment zone is expected to

remain dynamically stable. The two processes that can

destabilize the entrainment zone are: (a) a net input of

mechanical energy from the overlying mixed layer and (b)

enhancement of the mean kinetic energy available for

generation of turbulence, caused by a convergence of the mean

flow (- 'O) in the presence of the mean shear (-E) above the
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equatorial undercurrent core. With these processes, the model

for the entrainment zone invokes two hypotheses. First, there

will be no significant turbulent fluxes of mass, momentum, or

buoyancy unless the gradient Richardson number, R, is less than

a critical value. Second, if a dynamic instability is

initiated, the mixing coefficients of all conservative

properties are assumed to be proportional, and vertical fluxes

of momentum (--77) and buoyancy (gb7 w-7) will be just

sufficient to maintain the R, at the stable limit (Garwood,

1990), that is:

a RIC (2.2)

where R in this3 model equals 1/4.

The condition of proportional mixing coefficients for

uromentum and buoyancy is equivalent to having the flux

Richardson number PF be proportional to the gradient

Richardson nunber R,.

-WR f e/w (2 .3 )

wnere R - -q , and the dimensionless ratio y, may also be

interpreted as the ratio of eddy viscosity to eddy

conductivity. This razio is approximately 0.74 for neutral

conditions, and it is variable for turbulent regimes of

different stabilities. However, it approaches a constant value

of order unity in the stable limit for the transition from
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turbulent to laminar flow (Garwood 1990). In this model we use

Ycr = .

2. Momentum and Heat Equations

The mean momentum and heat budgets for the meridionally-

symmetric entrainment zone at the equator are:

a _ _ au'w' -ai -aU (2.4)
atx az - -

_ - a w-o-- - ug ax(2.5)

where is mean potential temperature, -uw1 is vertical eddy

momentum flux, and 7 is vertical eddy heat flux.

If large scale zonal gradients of -u, 6 , and -p are

independently specified, then equations (2.2),(2.3) together

with the momentum and heat equation (2.4),(2.5) constitute a

ciosed system of equations for al 0--7 W a U an

3. Steady State Solution

in steady state, the system may be combined to give 1st-

order differential equations for turbulent fluxes.

8u P - a g (2.6)

8F__ -- g F___ 2 (2.7)
dZ Y2r~c -

where P is the pressure gradient. Mean shear and rean

temperature estimates can be obtained when these equations are
solved for -u-(z) an - -ww (z)
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- __ (2(
a gJf 8'=W' (2.8)

ycrRicz

Bryden and Brady (1985), and Dillon et al. (1989)

suggested a Gaussian function for P by neglecting the zonal

advection:

P _ [ ] (2.10)
pax

where D=135 m and the zonal surface slope q, is on the order

of 10- (Garwood, 1990). For added realism in the unsteady

simulation, the solution includes the undercurrent core and

the region below, down to 300 m below the surface. To include

the region, w(z) is exponentially induced with depth, giving

a vertical dependence similar to that of Muller and Roth

(1986).

w(z) = -we (2.11)

where H = 75 m.

Because H is compared to , the turbulent fluxes of

momentum and heat into the top of the entrainment zone are

approximately equal to the surface value.

u-7(Z-_m = U- 2 (2.12)

-0wZH= (2.13)

For the steady state case in the model u =0.01 m/s and Q,,= 100

W/m -2 (Garwood, 1990).
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4. Dissipation Calculation

Assuming no significant external source of energy (such

as gravity waves propagating vertically from above or below

the entrainment zone), all the terms of the TKE equation can

be computed. In particular, dissipation can be shown to be

proportional to the buoyancy flux in the entrainment zone

(Garwood, 1990).

e = 0- g-v[ 1  Y1 (2.14)

D. UNSTEADY RESPONSE TO DIURNAL SURFACE BUOYANCY FLUX

After achieving a steady state solution, the imposition of

a diurnally oscillating surface buoyancy flux causes a

transient period of adjustment in the modeled ocean. The model

mixed layer entrainment zone system requires a few days to

again achieve a near equilibrium state. The diurnal response

to the dissipation of TKE below the mixed layer falls to near

zero from about three hours after sunrise until almost sunset.

Dissipation is both depth and time dependent. The time of

maximum dissipation occurs later as depth increases, and peak

dissipation at z=-120 m does not occur until just before

sunrise. This phase shift with depth for the response to the

surface buoyancy flux is due to storage effects in the :ean

buoyancy and mean kinetic energy (Garwood, 1990).
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III. MODEL SIMULATIONS AND DISCUSSIONS

In order to understand the role of dissipation in the

equatorial region, the EEZM (equatorial entrainment zone

model) is used to study the dependence of dissipation or

surface forcing, time, and depth. Typical temne ature and

zonal velocity profiles measured during The Tropical Heat I

Experiment in November 1984 are assigned as initial conditions

for the model system (Figure 1 and Figure 2). For a 12-day

period during November 1984, wind, solar radiation, and

dissipation were observed near 00N, 1400W. In this study, four

different numerical calculations of the momentum and heat

equation (equations 2.4, 2.5) were made:

I. Using a constant wind stress and a diurnal solar
radiation, this run shows that a nearly equilibrium
state is reached after five days and a diurnal cycle
is well simulated.

2. This run uses periodic solar radiation and a linear
increase or decrease of wind speed to note
differences in mixing processes.

3. After an equilibrium slate is reached, this run uses
time-dependent forcing dictated by recorded wind data
and simulated periodic solar radiation to verify wind
stress effects.

4. After an equilibrium state is reached, this run uses
forcing dictated by both recorded wind and recorded
solar radiation data to calculate the value of
dissipation for comparison with the observations.

The daytime heating due to solar shortwave radiation is

assumed as follows: sunrise is at 6:00 a.m., sunset is at 6:00
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p.m., and a maximum solar radiation is at local noon.

Nighttime solar shortwave heating is assigned a value of zero.

The back radiation from the sea surface to the air is given an

average value of 150 W/m2 as measured in the November 1984

cruise from Moum et al. (1986). For all four cases, the time

is treated as local time, which differs from the study of Moum

et al. (1986) where Greenwich Mean Time (GMT) was used. Day 1

hour 0 in this thesis corresponds to 1000 GMT, November 19,

1984.

The model predicts the value of the vertical integral of

dissipation as a function of atmospheric conditions and

initial vertical profiles of ' and -9. The dissipation integral

(fedz) provides a measure of atmospheric forcing effects. The

profiles are plotted every 2 days at hour 24, since

dissipation is larger in the nighttime, to show the

correlations between temperature T(z), zonal velocity T(z),

vertical momentum flux u-w7(z) , and dissipation e (z). For the

final day (day 12), the profiles are plotted every 2 hours in

order to present a daily cycle for comparison. Contouring is

used to give time and depth dependence of dissipation e (z,t).

Figure 1, the initial temperature profile, shows a shallow

mixed layer (5 m) with a temperature of 25'C. Beneath the

mixed layer - varies nonlinearly down to a depth of 130 m.

Below 130 m there is a relatively constant temperature lapse

rate. Figure 2 shows the initial zonal velocity profile. The

upper 25 m flows to the west with a maximum speed of 0.3
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m/sec, corresponding to the SEC. The lower portion region with

eastward flow with a maximum velocity of 1.41 m/sec at 120 m

depth, represents the EUC.

2. CASE 1

In this case, the model was forced with simple atmospheric

conditions. The wind stress was held constant for the whole

period with a value of 5 x 10-2 N/M2 (Newtons per meter

square). Solar radiation was cycled periodically everyday with

a peak value of 800 W/m2 (Watts per meter square) at local

noon, and longwave back radiation was assigned a constant

value of 150 W/m2 . The net downward surface heat flux plus

radiation yields a gain in the daytime and net heat loss in

the nighttime as shown in Figure 3. Here the nighttime is

defined as 6:00 p.m. to 6:00 a.m. and is a period of constant

heat loss at the rate of 150 W/m2. From 6:00 a.m., net heating

increases to a maximum value of 650 W/m 2 at local noontime

then decreases to zero again at 6:00 p.m.

The vertical profiles predicted by the model (Figure 4)

show that sea surface temperature dropped from an initial

value of greater than 25"C to less than 240C in day 11.

Dissipation occurs where the vertical momentum flux is

positive. Because the zonal velocity increases with depth

(f(<0) above the EUC core, a negative (downward) momentum flux
(-uw-'<0) is necessary because the shear production in the TKE

equation (2.1) cannot be negative. In the last hour of day 1,
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dissipation exists above the depth of 80 m (;=0=80), with a

maximum value of dissipation (e ma) of 2.6 x 10-6 m2/sec 3 at the

40 m depth. After a near equilibrium state is reached (day 5),

dissipation occurs between the surface and the depth of 90 m

(2=0=90) with a maximum value of dissipation (ema) of 1.9 x

10-6 M2/sec3 at 40 m. On day 9, dissipation occurs down to the

depth of 100 m with a maximum dissipation value of 1.9 x 10-6

m2/sec 3 at the region between 40 to 70 m depth. On day 11, 2=0

equals 105 m and efla\=l.6 x 10.6 m 2/sec3 in the layer of 30-70

m. The greatest magnitude for the momentum flux(u-w--,)

occurs at about 20 m depth every day. The profiles also show

that although the depth range of dissipation gets deeper with

time, it never exceeds 105 m (above EUC core) in this case.

The shape of the EUC core has been modified by the downward

momentum flux. On day I, there was a rounded EUC core with a

jet velocity Th . equal to 1.4 m/sec at the depth of 100 m. In

the period of day 7 to day 9, a narrower EUC jet with a -U,,

equal to 1.55 m/sec at the depth of 105 m was formed. On day

11, the location of -,, has moved down to a 110 m depth again

and reaches a value of 1.6 m/sec. The bihourly profiles on the

final day (Figure 5), show that the dissipation clears from

10:00 a.m. to 4:00 p.m. During this period the temperature

profiles also show the shallowing processes that allow the

temperature in the upper 20 m to increase from 24.0"C to

24.25"C. Although the velocity profile changed a little in the

first 11 days, both the shape and the maximum velocity value
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of the EUC jet remain the same in the bihourly profiles of the

final day. This suggests that the EUC jet may be effected by

the vertical mixing of the momentum input by the surface wind

stress. However, the EUC jet was not effected by the solar

diurnal cycle.

As seen in Figure 6, the dissipation diurnal cycle is well

defined, even on the first day. After day 5, when an

equilibrium state is reached, the phase shift of dissipation

with time and depth is clearly seen, as mentioned by Garwood

(1990). The innermost closed dissipation contour line

occurring in the nighttime is an elongated area which shows

the largest dissipation region sinking with time. Also,

maximum dissipation in shown to occur at about midnight. The

zero dissipation period is caused by strong noontime downward

heating (buoyant damping) which balances the mechanical

instability induced by momentum transport. This happened on

day 1 from 9:00 a.m. to 1:00 p.m., but in day 4 it occurred

from 9:00 a.m. to 3:00 p.m. and in day 12 was from 9:00 a.m.

to 4:00 p.m. The longer period with no dissipation on later

days may be due to adjustment by the model to reach a true

equilibrium state. Since the atmospheric forcing was identical

each day, the differences in dissipation rates may be

attributed to the lack of a true equilibrium state on day 5.

After day 5 the daily variation in dissipation is not very

significant; therefore, near equilibrium state was assumed at

day 5. The vertical integration of dissipation (Figure 7d)
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also suggests that equilibrium state is almost achieved by day

5.

The vertical integration of dissipation is influenced

strongly by the diurnal cycle of solar radiation. The maximum

integral value for each day occurs just before midnight (hour

24). This value slowly decreases until sunrise when it

declines sharply to zero at about 10:00 a.m. Two hours before

sunset the vertically integrated dissipation value begins to

increase. Then at the time of sunset, it increases steeply to

a maximum value at about midnight. As shown in Figure 7d,

there are minor but unexpected fluctuations in the vertical

integral of dissipation for day 4 and day 9 that were

initially attributed to numerical instability. However, when

the Adamec et al. (1981) mixing iteration process was doubled

in the number of iterations, the fluctuation remained. These

fluctuations remain unexplained.

B. CASE 2

In this case, an arbitrary wind condition was applied to

test the effect of increasing or decreasing wind stress to the

dissipation. For the first four days, the wind speed (a,) was

held constant at 6 m/sec to reach an equilibrium state similar

to case 1. From day 5 to day 8 the wind speed was linearly

increased to 10.8 m/sec, and then it was linearly decreased to

1.1 m/sec for the period from day 9 to day 12 (Figure 8). The
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squared friction velocity (u 2) was calculated by the

equation:

Pa C U (3.1)

U, = , D- 10

Where the air density Pa is 1.25 kg/m3, the sea water density

p, is 1025 kg/m 3, and the drag coefficient CD is 1.3 x 10-3.

The value of wind stress pu* 2 for the first four days is

about 5.6 x 10-2 N/m2, slightly greater than the value in case

1. The vertical integral of dissipation shows the maximum

value of each day was correlated with the wind speed. The

reason for the fluctuations which occurred on days 3, 4, 5,

and 8 are still not understood.

The vertical profiles of -u7-w7, and e for the first

four days are almost identical to those for case 1 (Figure 9).

The most interesting results occurred during the periods when

the wind speed was varied. Therefore, the bihourly profiles

for day 8 and day 9 are plotted in Figure 10 and 11 to show

the effect of variable wind forcing on the daily cycle.

In the day 5 profiles shown in Figure 9, the greatest

magnitude for the momentum flux occurred at 20 m, increasing

to a value of 10 x 10-5 m2/sec 2 with the downward momentum flux

extending to a depth of 100 m. The maximum dissipation (emax)

increased to 2.5 m2/sec3 at a depth of 50 m. Those results are

different from those in case 1, showing that increasing the

wind forcing can produce a larger downward transport of energy

that reaches to a greater depth. The shape of the EUC core
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narrowed at day 7 and the - ax location occurred at 110 m

depth, earlier and deeper than that in case 1. Table I

summarizes values of u7-max , €e., their respective depths, and

depth at which dissipation and momentum flux vanishes (6=,).

From this table, a comparison of -u--7m with the wind speed

(a10) shows that the value of w at 20 m depth is

proportional to the wind speed. At day 10 hour 24, u1 =6.0

m/sec again and the u--7m =-8 x 10. m2/sec2, the same value as

in the first four days. Since wind speed is decreasing at this

time, this result suggests there is no time lag for u7w-7 flux

to reach the depth of 20 m. Maximum dissipation value

increases corresponding to increasing of uw,, in depth of 20

m. Likewise, the depth of maximum dissipation (Z 1.,\))

increased during the period between day 5 and day 8. However,

the maximum depth of dissipation (=.,) continually deepened

with time to reach 115 m at day 10 then subsequently shallowed

due to lack of mechanical energy (weak wind stress) input.

From the bihourly profiles for day 8 (Figure 10), the

downward displacemen:t of the location of Z ,can be clearly

observed. During the maximum solar heating period of a

day(hour 10 to hour 16) when the dissipation vanished in case

1, the dissipation was still evident in case 2 with a minimum

value of 1.3 x i0-( m2/sec- at 11:00 a.m. at a depth of 20 m.

This occurred because the buoyant damping did not balance the

increased shear production of turbulence due to a stronger

wind stress. The bihourly profiles for day 9 (Figure 11) show
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TABLE I. DAILY INFORMATION ON WIND SPEED (UIo), MAXIMUM VALUE
OF DOWNWARD MOMENTUM FLUX , MAXIMUM VALUE OF DISSIPATION RATE
(e1 O), DEPTH OF MAXIMUM DISSIPATION (z,=max)' DEPTH RANGE OF
DISSIPATION (7t=0)' AND DEPTH OF EUC JET (Zj =m.) BASED ON
PROFILES OF CASE 2.

'n0 U N" max emax 7 =ma\ e =0 1 f=max
(m/s) (M) (M) (M)

10-5 10-
6

(m2,s )  (m2_s 3 )

Day 1 6 -8 2.8 35 75 112

Day 2 6 -8 2.4 40 80 112

Day 3 6 -8 2.2 40 90 110

Day 4 6 -8 2.0 40 95 108

Day 5 7.2 -10 2.5 50 100 105

Day 6 8.4 -13 3.0 60 105 110

Day 7 9.6 -16 3.4 70 105 110

Day 8 10.8 -18 3.7 80 110 115

Day 9 8.4 -13 2.4 75 115 117

Day 10 6.0 -8 1.4 40 115 120

Day ,1 3.6 -2 0.4 20 25 120

Day 12 1.2 0 0 0 0 120

that the effect of maximum wind stress on the zonal velocity

remained for several hours and preserved the shape of a

narrowed EUC core. This is consistent with the phase shift of

dissipation with time and depth shown in case 1. The bihourly

dissipation profiles of the final day (Figure 12) provide more

evidence for the downward propagation of momentum to a

relatively shallower depth. Dissipation ceases three hours

after sunrise due to the low wind stress condition.
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Contours of dissipation (Figure 13) are a complete picture

of dissipation versus time and depth e (z,t). They show the

dissipation value increasing and deepening during the linearly

increasing wind period, and decreasing in the period of

linearly decreasing wind. The strongest dissipation occurred

at late day 8 and early day 9, when the wind stress was also

strongest. Two closed contour lines at 40 m depth during

noontime of day 8 and early day 9 are relative minimum

dissipation values of 8 x 10-  and 6 x 10- m'/sec

respectively. These two shallow dissipation minima suggest

that strong daytime solar shortwave heating has its greatest

effect at the depth of 40 m. On day 10 hour 22, there are

double mnaxima in dissipation, at depths of 40 and 70 m. Th-s

higher dissipation in the deeper region may be at-ributable to

the phase lag between mechanical energy input as the surface

and the vertical-propaga:ion of dissipation "event."

C. CASE 3

In this case, the wind is held constant for seven days to

reach equilibrium state. Then the model was forced with

stresses computed using speed observed during the ropic -Heat

I Experiment. Figure 14 shows the observed wind speed a?.d the

calculated value for um, from equation (3.1). Th- su-face heat

fluxes were the same as in previous cases. This figure a'so

allows comparison of the vertical integral of dissipation with

time series for the atmospheric forcing. The daily cycles are
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dominated by the diurnal solar radiation. The value for the

vertical integral of dissipation is also influenceca strongly

by the wind st: ss. This is consistent with the results for

the firsi two cases.

Prof i.es of model simulation are again plotted for the last

hour o' odd number days and every tw- hours for the final day.

Because -he wind conditions shown in Figure 14 indicate

periods oE high wind speed (r), a greater depthi of

penetration nd larger value for dissipation were expected.

Figure 15 shows that uhe depth of dissipation region ((,) at

day 1 was 100 m and deepened to 145 m at day 11. On day 9, a

secondary dissipation maximum was predicted at 110 m near the

bottom of the dissioation region. This coincides with

increased mixing of heat and momentum in the deeper region. A

narrowed EUC core formed on day 3. After day 7, the zonal

veocity gradient became greatly negative above the EUC jet

and small positive just under the EUC jet. More detailed daily

information on = (maximum downward momentum flux), e,,,,

(maximum dissipation value, ; (depth of maximum

dissipation occurred), 7,., (depth of dissipation vanished,

., (maximum zonal velocity of EUC), and Z=m,\ (depth of EUC

jet speed) has been summarized in Table II.

In Table iI, downward extension of the dissipation region

and propagation of the EUC core reflected by the downward

momentum transport due to wind stress are ihighlighted once

more. The dissipation region (;,,) and depth of the EUC core
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(Z=m- ) extended downward at a faster speed than in the

previous cases and reached a greater depth. Although the wind

stress varied with time, the total dissipation was highly

correlated with the downward momentum flux which corresponds

to the wind stress. The secondary maximum dissipation regions

shown in the table are marked in parentheses. For the last

three days, the small secondary dissipation maximum under the

EUC core are caused by small upward momentum flux together

with a positive zonal velocity gradient, generating turbulent

kinetic energy under the EUC core. At day 11 and 12, the depth

where dissipation vanishes ('z0) lies below the depth of the

EUC jet (Z_ ,,) because of the upward momentum flux under the

EUC core.

Figure 16 illustrates the diurnal cycle of the final day.

Dissipation weakened between hour 10 and hour 16 when the

solar radiation is strong. This is consistent with the

previous results. The zonal velocity profile did not change

between hourly observations. Also, U(z) increased nearly

exponentially from the surface to the depth of the jet then

slowly decreased for about 20 m below the jet. The deep

profile of zonal velocity remains unchanged. For all 12 plots

in this figure, there is a small local dissipation maximum

between the depths of 135 m to 145 m with the maximcm value

occurring right at the jet level. The value of shear

production, (-u- ) , must always be positive, so the small
az

positive zonal velocity gradient below the EUC jet together

30



TABLE II. DAILY INFORMATION BASED ON CASE 3. SOME SECONDARY
MAXIMUM DISSIPATION VALUES ARE LISTED IN PARENTHESIS.

u'wrmax e max 7 =max *=0 -max ZU=Ma

(n) (m) (m/s) (m)10 .5  10-6

(m
2 /s

2) (mi
2 /s

3)

Day 1 -11 2.7 55 100 1.6 105

Day 2 -11.5 2.6 60 105 1.6 110

Day 3 -13 2.9 65 105 1.75 110

Day 4 -18 3.7 70 110 1.5 115

Day 5 -16 3.2 80 115 1.55 120

Day 6 -13 2.1 70 115 1.45 120

Day 7 -14 2.4 95 115 1.48 120

Day 8 -16 2.5 90 120 1.5 125
(2.1) (115)

Day 9 -15 2.3 80 120 1.4 125
(2.1) (110)

Day 0 -20 3.2 105 130 1.4 130
(0.2) (125)

Day i -15 2.5 i00 145 1.35 135
(0.3) (135)

Day 12 -14 2.3 95 145 1.4 140

1 ~(0.3) (140) 1111

with small upward momentum f lux can generate TKE to give a

secondary but weaker dissipation region under the core.

The time series of dissipation (Figure 17) reflects the

wind stress effects. On day 1 hour 11, a peak in dissipation

was caused by a wind speed maximum just before noon as shown

in Figure 14. On days 2, 3, 4, 5, 7, 9, and 12, there are two

local dissipation maxima at early morning. These are also

attributable to the wind fluctuation history. Based on this

figure, Table III summarizes the time (day and hour) and value
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of maximum (or minimum) dissipation (ema), depth of the

maximum (or minimum) dissipation (Z =maj) wind velocity at

that instance (-d0), and the status of the wind. Here, the

geometric center of the innermost closed contour line is used

to compute the maximum (or minimum) value.

The table indicates that the maximum dissipation values

occurring in the early morning (before 6:00 a.m.) always

corresponded to peaks in wind speed. However, in the nighttime

the maximum dissipation values did not always correspond to

the wind fluctuations. Sometimes the dissipation maximum

lagged the fluctuation by one or two hours. The minimum values

of dissipation always occurred in the daytime (between hour 10

and 14) and corresponded to wind minima.

TABLE III. A LISTING OF MAXIMUM (MINIMUM) DISSIPATION RATE,
ITS DEPTH, AND WIND SPEED BASED ON DISSIPATION CONTOURS OF
CASE 3.

Da Hu 9 d 'n7dx status "t 11

(ill (mi S (i tnumbers art inl UniS of ft sCC
(10- 6 m2  

,3

1 1 0. 4 20 7.54 naxm um \alue of a narro\w ,pike

I 20 2.6 25 7.20 decreasing. 2 irs .,'tcr ma\imum \afluc o(

1 2.55 25 niami m %ahe

2 6 2.0 o0 7.02 increasing. 3 hrs after 1mir lrn \a)ti a c of

9 I hr 1elorc maximum r ic \ale - 2

2 24 2 4 60 0 .5 maximum auc

3 6 2.4 65 - ('4 mri MU111 Naflii

3 201 3.4 'S 8.93 decreamng. i hr. aitcr rna irnuni %aluc o)

9,30

4 4 2 8 70 9.12 maximum \aluc

4 24 3.8 5 It0 55 ma\ititim %ahiic
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Day Hour a max i =max "1110 status ofV10

(106 m2 s3) (M) (m, s) (numbers are in units of m sec

5 4 4.0 75 11.14 maximum value

5 13 ( min) 0.8 45 10.10 minimum value. 3 hrs. after maximum

value of 11.10. 2 brs. before next maximum
value of 10.65

5 20 3.4 80 9.78 decreasing. 2 hrs. after maximum value of

10.55

6 2 3.6 75 11.10 maximum value

6 10 ( min) 0.2 40 9.23 increasing. 2 hrs. after minimum value of

8.72. before maximum value of

6 20 2.6 75 8.90 decreasing. 2 hrs. after maximum value of

9.37

7 1 2.2 70 8.82 maximum value

7 6 2.2 80 8.98 increasing. 3 hrs. after minimum value of

8.56. 4 hrs. before maximum value of 9.86

21 2.8 95 9.69 decreasing. 1 hr. after maximum value of

8 1 2.6 90 Q.-3 maximum value

8 211_11m 11 25 7.65 rninunw. \alue. I hr. after maxmum

value of 7.76. 3 hrs. before next maximum

\aluc of C'

8 24 2.6 85 8.4S decreasing. I hr. after maximum value of
902

9 6 2 0 8( 8,9- maxinum value

9 26 2.(, 25 9.11 decreasing. 1 hr. after maxim-um value of

9 24 2.4 8f) 9.1- ntaximum value

10 20 2.8 40 10 3" maximum ,,alue

10 24 3.2 110 10.90 decreasing. 1 hr. after maximum value of

______ 0.0-1

11 20 2.4 30 9.31 decreasing. I hr. after maximum value of

II 22 2 6 ion 9.46 maximum value

12 6 24 95 9.81) maxlnitni .alue
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Da% Hour 9 max i =max TIO status OfT
(M) (m s) (numbers are in units of m sec(10 -6 m2 s3 )

12 20 2.4 40 9..3 decreasing, 1 hr. after maximum value of

9.67

12 223 28 95 9.35 decreasing, I hr. after maximum value of
I j 9.67

D. CASE 4

For the last case the wind speed is held constant for seven

days until a near equilibrium state is achieved. Then the

model is forced with observed wind and observed solar

radiation data. Comparing the result in this case with the

result in case 3 can give some understanding of the physical

effect of solar radiation on dissipation. For this case, a

comparison was made between the model prediction and actual

observations, this case is the best test of the model.

Atmospheric forcing was the same as in case 3 (Figure 18).

Solar radiation recorded in the Tropic Heat I Experiment is

higher than the value used in previous cases. Here the maximum

radiation reached values of 1,000 W/m'. An average value for

back longwave radiation of 150 W/m2 was assumed. This resulted

in the heat nighttime net heat loss of 150 W/m' and daytime

heat gains sometimes reaching 850 W/m 2 at midday.

Because the atmospheric forcing in the nighttime is

identical to that of case 3, the trend of vertical integral of

dissipation has a shape similar in Figure 18 to that in Figure

14. However, the integrated dissipation values in the daytime
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are somewhat less in this case due to stronger shortwave

heating, and the integrated dissipation values are slightly

larger in the nighttime. The lower value of the integral of

dissipation in the daytime and larger value at the nighttime

is explained as follows. Because of the larger solar heating

during the day in this case, there is a shallower daytime

mixed layer. For the same wind stress applied to the sea

surface, a larger mean kinetic energy is expected to exist in

the shallower mixed layer, based on conservation of momentum.

In the nighttime, shear production, which is a conversion of

mean KE to TKE is not balanced by buoyant damping. The

downward momentum flux will act with the mean shear to convert

more KE into TKE, and this will be reflected by the increased

dissipation rate. Therefore, the maximum in dissipation at day

1 hour 11 which was caused by a wind maximum in case 3 is not

evident in this case. There are three daytime events with

fluctuations in integrated dissipation: at the midday of day

3 and before noon on days 7 and 12. These events are

attributed to stronger wind, coincident with a reduction in

solar heating due to cloud cover, shown in Figure 18b and 18c.

The bidaily profiles shown in Figure 19 are almost

identical to those obtained for case 3. The shape of the

profiles of dissipation, the maximum vertical extent of

dissipation (7=,,), and the zonal velocity changes are very

similar to Figure 15. Only a slightly higher nighttime

dissipation rate is reached after day 5, and a larger upward
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momentum flux under the EUC core is found in day 11. That

means higher solar heating in the daytime cannot change the

downward entrainment velocity. However, it may make small

contributions to the TKE budget.

The bihourly profiles for the last day (Figure 20) show

that before hour 8, the vertical distribution of dissipation

is similar in cases 3 and 4 with a slightly larger rate in the

latter. At hour 10, the profiles in case 3 and in case 4 are

virtually identical. During the period of high solar heating

(hour 11 to 14) the net dissipation in case 4 is greatly

decreased. From then until hour 18, dissipation in case 4 is

strong at 20 m but weaker in the lower depths. The hour 20

profile shows that the dissipation rate for case 4 reaches its

maximum value at a depth of 35 m, the value much larger than

that in the same time at the same depth in case 3, and it

approaches the same value of case 3 at 100 m. Table IV lists

the dissipation values at three different depths in cases 3

and 4 to demonstrate this effect.

A comparison of the contours of dissipation in case 4

(Figure 21) to those of case 3 dissipation at the 40 m depth

almost every local noontime. The only exception was on day 8,

when Figure 21 shows a 0.2 m2/sec3 dissipation contour starting

at hour 11, and corresponds to the cloud cover increase at

that time. In the first three days, the nighttime dissipation

maximum are almost the same value and depth but covered a

larger region and longer duration (Figure 21). After early
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TABLE IV. LISTING OF DISSIPATION AT THREE DIFFERENT DEPTHS IN

CASES 3 AND 4

Day 12 Case 3 e. (10-6 m2/sec 3) Case 4 e (10-6 m 2/sec3 )

hour z=100 z=50 z=20 z=100 z=50 z=20

2 2.6 1.9 0.9 2.6 2.0 1.0

4 2.3 1.6 0.7 2.3 1.7 0.8

6 2.3 1.5 0.7 2.3 1.6 0.7

8 2.1 1.4 0.8 2.2 1.5 0.9

10 0.7 0.4 0.7 0.7 0.4 0.7

12 0.4 0.3 1.0 0.2 0.1 0.5

14 0.3 0.3 1.2 0.1 0.1 1.2

16 0.4 0.3 1.5 0.1 0.2 1.6

18 1.3 1.1 2.1 1.0 0.9 2.5

20 2.8 2.3 1.9 2.8 2.5 2.2

22 2.8 2.3 1.4 2.9 2.6 1.6

24 2.4 2.0 1.0 2.5 2.2 1.2

morning (hour 4) of day 4, the maxima of dissipation at 70 m

in case 4 are generally larger than those maxima in case 3 by

one contour increment, a value of 2 x 10- m /sec . A

significant dissipation increase in case 4 is noted at 40 m

depth between hour 18 to 20 of each day. The maximum of

dissipation in case 4 increased by 4 x 10 m-/sec' or more than

those in case 3. This event shows that right after sunset the

increased upward buoyancy flux due to daytime sea surface

heating will tend to destabilize the fluid more in shallow

regions than in deeper regions.
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E. COMPARISON AND SUMMARY

Observed depth-averaged dissipation for the Tropical Heat

I Experiment are shown in Figure 22 (Moum and Caldwell, 1985).

In this figure, Moum and Caldwell showed that the major

variation in turbulent mixing (e ) was associated with daily

changes in the sign of the surface buoyancy flux. It is also

noted by Moum et al. (1989) that dissipation differed by

nearly a factor of 10, on average, between local noon and

early morning, increasing through the night and decreasing

suddenly several hours after sunrise (Figure 23). Daytime

profiles show decreases in dissipation of more than a factor

of 100 from profiles during the night. Table V comes from

averaging the vertical dissipation integral of each hour in

case 4. The results of this calculation compare favorably with

the observations of dissipation, showing differences in fedz

by a factor of 10 between local noon and early morning. For

all four model runs, the dissipation diurnal cycle is

dominated by the diurnally changing buoyancy flux, as

concluded by Moum and Caldwell (1985). The dissipation results

also show that dissipation increases approximately two hours

before sunset and reaches a daily maximum at about hour 22

local time. Dissipation then decreases about two hours after

sunrise and reaches a daily minimum at about local noon. This

is also in agreement with the observations.
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TABLE V. AVERAGED VERTICAL INTEGRAL OF DISSIPATION FOR EACH
HOUR IN CASE 4

Hour Integrated averaged Hour Integrated averaged
dissipation dissipation
(10-4 m3/sec3 ) (10-4 M 3/sec 3)

1 0.4311 13 0.0276

2 0.4177 14 0.0441

3 0.4001 15 0.1410

4 0.3892 16 0.0836

5 0.3810 17 0.1565

6 0.3795 18 0.2370

7 0.3779 19 0.3045

8 0.3374 20 0.4279

9 0.2362 21 0.4555

10 0.1423 22 0.4612

11 0.1380 23 0.4594

12 0.0411 24 0.4088
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Figure 1. Typical Figure 2. Typical zonal
equatorial temperature velocity profile on
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study. study.
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Figure 3. Met downward surface heat flux for prescribed first
three cases.
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Figure 4. Bidai1y model-predicted profiles of zonal velocity

(M(z) solid line m/sec), temperature (T(z) dotted line degree
C), downward momentum flux (-V"'W (z) dashed line M2/seC2) , and
dissipation (e (z) chaindot line m"/sec 3) for case 1.
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Figure 5. Bihourly model-predicted profiles of zonal velocity
(U(z) solid line rn/sec), temperature (-f(z) dotted line degree
C), downward momentum flux (-MUWW') d ,ashed line m2 /sec'), and
dissipation (e (z) chaindot line m /sec 3) for day 12 of case 1.
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Figure 6. Predicted vs. t and z daily dissipation for case 1.
The contour increment is 2 x 10-7 m 2/sec.
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Figure 7. Surface forcing conditions and vertical integral of
dissipation for case 1. (a) Constant wind speed of il =5.
ni/sec is shown. (b) Wind stress is constant value of 0.05
N/M2. (c) Sum of simulated solar radiation and backradiation
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46



12 .0.

0.05

"' 8.0.

6.0-4 .0

9 .0-

t.0-

5M.0

3W.0

0.0 -0.6 . 2.0 2.0 4( 0.0 6.0 7.0 6.0 . 20.0 '2.0 ,2.0

0.2-

S .0

-20.0-

V D.0 1.o 2.0 i .C .. o ST C. 7.0 .0 1o ,.

2.10

C-

En

C3 4 , u ' "

0.0 1.0 2.0 .0 4.0 5.0 .0 7.0 3. .0 2.0 2.0 12.0
TIME (UNIT Or DRYS)

221.0-

2

'.. 3 0 -

Y 0. 2.0 2.0 0.0 4.0 5.0 S.C 7.0 6.0 6.0 20.0 22.0 22.0

Figure . Surface forcing conditions and vertical integral ofdissipation for case 2. (a) Wind speed is held constant valueof 6 m/sec for 4 days. From day 5 to day 8, the wind speed islinearly increased to 10.8 m/sec then it is linearly decreasedto 1.1 m/sec for the period from day 9 to day 12. (b) The windstress calculated from equation 3-1. (c) Net surface heat flux
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Figure 17. Predicted daily dissipation vs. t and z for case 3.
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Figure 22. Depth averaged dissipation (10-110 m) observed in
the Tropic I Experiment in November 1984 at equator, 140 W.
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Hourly winds from shipboard measurement are superimposed.
(From Moum et al., 1989)

2 O r --r-r---r----T -v r -- r - -

& 0 0 'TROPIC HEAT' CANONICAL DAY 0

o 0 "

0 4 - 0
, , ," , .. . . . , ' . . .

O 2 4 6 8 to 12 ,4 16 18 e 2 22 24

HOUR OF DAI (10coll

Figure 23. Ensemble averages of depth-
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day from the dissipation observations in
the Tropic Heat I Experiment in November

1984 (Moum et al., 1989).
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IV. SUMMARY AND RECOMMENDATIONS

The purpose of this study was to investigate how the

turbulent mixing and dissipation in the equatorial entrainment

zone are effected by surface forcing. An equatorial

entrainment zone model developed by Garwood et al. (1989) was

employed to explain the effects of wind stress and surface

heat flux on dissipation of turbulence. For a variety of

cases, the model successfully predicts both the deep

dissipation events in the equatorial entrainment zone and the

diurnal dissipation cycle.

The model was forced with four different surface forcing

conditions to demonstrate the relative roles of wind stress

and surface heat flux on the dissination rate. In the case of

diurnally periodic solar radiation and constant wind stress

(case 1), a near equilibrium state was reached by day 5.

Dissipation occurs mainly above the EUC core where the

vertical gradient of zonal velocity is negative ,nd the

momentum flux is downward. Therefore, a downward propagation

of dissipation is reflected in the sequential dissipation

profiles that show the depth of maximum dissipation to

increase with time in response to changes in surface forcing.

The greatest magnitude of downward momentum flux is always at

20 m, the base of the mixed layer. The vertical integral of
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dissipation reaches its maximum value just before midnight and

sharply decreases two hours after sunrise.

The model simulation using a linearly varying wind speed

(case 2) shows the maximum magnitude of downward momentum flux

at 20 m responding instantly to the wind stress. The depth of

maximum dissipation is also effected by the wind. The model

simulation using recorded wind (case 3) exhibits a greater

depth of dissipation penetratic.. and a larger value of

dissipation resulted from longer-lasting high wind events. The

maxima of dissipation value occurring in the early morning

(before sunrise) always correspond to the peaks in wind speed.

However, after sunset to midnight, the maxima of dissipation

values do not always correspond to higher wind events.

Sometimes the dissipation maxima lag the wind fluctuation by

1-2 hours.

The model simulation using recorded wind and solar

radiation (case 4) results in a larger value of buoyant

damping due to stronger daytime shortwave solar heating at the

sea surface. This decreases the daytime dissIDatio rate and

increases mean kinetic energy stored in the mixed layer. After

sunset, the shear production of TKE converts more mean KE into

TKE, giving a higher value of dissipation rate in the

entrainment zone. Dissipation is increased more in the shallow

region than In the deep region. A secondary dissipation

maximum under the EUC core at about 140 m dept is frequently

evident. The 12-day ensemble of vertical integral of
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dissipation has been averaged for each hour of the day to show

dissipation differs by nearly a factor of 10 between local

noon and early morning and reaches its greatest magnitude at

hour 22. These modeled effects compare favorably to the

observations.

This equatorial entrainment zone model based upon an

assumed dynamic stability criterion explains both the unusual

thickness of the entrainment zone at the equator and the

potential for short-term fluctuations in surface forcing to be

"felt" at a considerable depth below the mixed layer, with a

phase lag that is depth dependent.

Several recommendations for further study are suggested

from this work:

1. What is the appropriate value for the critical
Richardson number in the entrainment zone at the
equator, and Is this a universal constant for all
oceanic entrainment zones?

2. Doe- a similar dynamic instability influence the
region below the undercurrent? Numerical
experimentation indicates that this region may become
dynamically unstable, depending upon the vertical
velocity field and the barociinicity of the flow.
However, turbulence beneatn the undercurrent doe-,' not
appear to be as stro g in this region as it is above
the undercurrent core.

3. Wnat is the role of asyjmmetry about the equator :

the surface forcing? Meridional fluxes may be
significant, and ever transient meridionol velocity
events may have a:-, important role in d: eermi;..:-.q t he
ec>'ibrium state of the i:,n:: velocity field a' the

equator. Theref oe, more i nnesC survey is needec ac:i
a nuree-dl.en. ionil model must be de veloped to
sFimv.ate The phenomena realistically.
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